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SUMMARY

An enalysis 1s glven of the oscillating motion of a ballistic missile
which upon entering the atmosphere is angularly misaligned with respect
to the flight path. The history of the motlion for some exsmple missiles
is discussed from the point of view of the effect of the motion on the
aerodynamic heating and loading. The miss distance at the target due to
misalignment and to small accldental trim angles is treated. The sta-
bility problem is slso discussed for the case where the misgsile is
tumbling prior to atmospheric entry.

INTRODUCTION L

It is characteristic of long-range rockets that, because of the low
efficiency of the propulsion system, the weight at take-off is large com-
pared to the final weight after fuel is expended., Typically, a saving
of 1 pound in final welght can save of the order of 20 pounds of initial
welght and, as a result, strict attention must be given in the design of
rockets to keep design safety factors to a minimum. Thus the magnitude
of the factors which principally influence the finsl welght must be known
with as great accuracy as possible.

Two such factors are the aerodynamic load experienced by the vehicle
as it descends through the atmosphere, which affects required structural
welght, and the aerodynamic heating experienced in the descent, which
effects required ceolant weight. Problems relating to the loading and
heating of missiles during atmospheric entry have, of course, been given
considerable sttention, both from & general point of view (e.g., ref., 1)
and in detail for specific designs. In the usual treatment of the problem,
however, the rather ideslized case has been treated wherein the vehicle
enters the atmosphere unyawed or unpitched with respect to the flight
path and without angular velocity. If the vehicle enters the atmosphere
in a yawed or pitched attitude, 1t will, during its oscillatory approach
to the earth, be subjected to lateral forces in addition to the longi-
tudinal forces due to deceleration., Moreover, the distribution of

lsupersedes NACA RM A56F15 by H. Julian Allen, 1956,
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aerodynamic heating over the surface for the osclllating vehicle will
differ from that for the vehicle if aligned with the flight path., Thus
a questlon arises as to what extent the structural welght and the weight
of coolant might-be altered by the fact that the rocket upon entering
the atmosphere is angularly misaligned and has angular velocity.

The analysis of reference 2 provides an excellent basis for such a
study. chever, the results of that analysis are in a form which is not
convenient for demonstrating the relative lmportance of the several fac-
tors which are of prineipal interest to the loading and heatling problems, z
It is the purpose of this paper to re-examine the motion analysis of i _
reference 2 using some simplifications which were employed in reference 1 L
in order to indicate more clearly the sallent features of the motion
problem and its effect, in turn, on loading end heating.2

BASIC ASSUMPTIONS ' =

In the analysis to follow it will be assumed that the mlssile warhead
which enters the atmosphere is rotationally symmetric so the misalignment
angle may be considered as yaw or pltch or any vector combination thereof,
and that the fineness ratio is sufficiently low and the Mach number is
sufficiently high that the pressure distribution is independent of Mach
number for the Mach number range of ilmportance (see ref. 4). Thus, the
rates of change of the respective aerodynamic force and moment coeffi~
clents with «, &, and ¢ are consldered to be constants. The basic : .
assumptlion of the analysis of reference 2 is retained in the analysis to )
follow; namely, that the angular oscilletions are small so that the sine
of the angle of oscillation 1s the angle of oscillation 1n radians and
the cosine is unity, and the drag coefficient 1s sensibly the same as it
would be for the nonoscillating missile, In addition, the assumptions
employed in reference 1 are also employed hereln; namely, that the accel-
eration of gravity is constant with altitude, the flight path through the
atmosphere is essentially a straight line, and the variation of air density
is the exponential function —

p ==poe'By . (1)

wherein p, and B are constants and ¥y 1s the altitude measured from
ses level.

A complete list of symbols is given in Appendix A,

2T+ should be noted that an analysis has been made in reference 3 ‘*
which, although principally almed at study of other features of the sta-~
bility problem, employs a basic spproach similar to that of the presen’o
report, B
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ANATYSIS

If the angular displacements are small, then the differential equation
of angular motion with time as the independent vaeriable may be written

3%a

L2+ 2u(v) & | fa(t)a = 0 | (2)

wherein the time-dependent coefficients are given by

Cr,PVA ) (cmq + Cm&)pVAZE (
om 2T 32)

£1(t) =

oVA\  Cm.Cr_p2V2AZ12 . ov2A1
ra(t) =& (Clgm ) e - C“‘“QI (3b)

where the angle of attack is as indicated in the sketch.

SThis formulation is equivalent to equations (12) and (13) in ref-
erence 2 except that in reference 2 the value of Cm& has been tacitly
assumed to be zero, which is a Jjustifiable assumption at high Mach num-
bers. The quantity Cp. is retained in equation (3a) to be consistent
with NACA standard nomenclature (e.g., see ref. 5).

~



NACA TN 4Oh48

Tt is convenient, now, to rewrite equation (2) with altitude, v,
! rather then time, t, as the independent varisble., To this end, it is

noted that for the straight flight path assumed (6 = Oy =
Y gy = -V 8in 6
t
2
d
E—Z= -Q'X-q-'y-sin Op =V—Ysin29E
at dy dt dy
Thus
doo o 4y _ da,
dt_dydt— VsineEdy
2
d2a _ &%a (g;) 8o &%y _ o, 2, 2o oAV . oo da
—_— e 4+ = = Vegin“6n —— + V — 8in“6p —
at? @y Mt & at® Ey? E gy
so that equation (2) becomes
d2a da
— + T — + T =0

whereln the altitude-dependent coefficients are

av/dy = Crgph (Cmg + Cmg)PAL®

£ =
o) == " Zmain ey ' 2 sin og

constant)

(ke)

(kb)

(52)

(5)

(6)

(Ta)
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Or,Ade/dy)  Crpe(dV/dy) — CpoCre®A1® oy om

£(0) = - omm og 2mV sin 6g 4Tm sin6; ~ 2T sin?eg (70)

It is shown In reference 1 that by use of the same basic assumptions
as have been made in this report, the velocity may be expressed as

- V=Ve"2'e-ﬁy- (8a)
B
where
o2 CDDOA .
ko = B sin op . (&)
Hence
dv/dy _ Bko -py
e 8e)
and from equation (1)
do _ -By
a_;y. = -Bpoe (8'6‘)

Thus equations (7a) and (7b) become, upon setting the square of ‘the radius
of gyration as o2 = I/m,

(G Cmg) 257 .
fa(y) = 5—% [CD - C'T‘U. + g -;2 g, :le By (98.)

Pl [ Cmy 2 } -By . PoPAZ [
£ = - +C sin e + +—5~———|-Cy, Cp-
+(¥) em sin®er o2 Ie? % kmPsin®gg | o D

2
CmqCLg ]e-aﬁy
0-2

(9p)
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If we set
then equation (6) may be written
! -Y da ( -Y -2Y>
== 4 2k.,e = — + | kgze + =0 10b
de 1 3y 2 kse ¢4 ( )
wherein the constants are
A 2 )
1) v kl = fo [C‘D - CIU. + (Cmq + Cmdl)(l) }
4Lpm sin Op g
_. P ( “Cmg ! 5 > >
- ks = - + C sin 10
2 7 op2m sin®6g a2 TP 3 % (10e)
2,2 2
: e | o)
L kg = -Cr Cpn - Cx Cr.\ =
Tes lLBszsinzeE LD ! Ib'_c
7 ) J
Tn order to find a solution for the differential equation (10b) let
kle-Y
a = ne (11)
go that’
..Y -
9-__@ kle E-ﬂ -k -Yekle
ax ay ~ v n
and
o -Y .o -¥ -Y -Y
B _ ke B Y ke dn <k Y ke 2o 2T ke >

Substitution in equation (10b) then yields
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&

dﬁ+[&z+hh”+(%-kfk*ﬂn=o (12)

The rigorous solution of this equation is not necessary 'since the
term

e

1o

(ks - k12)6-2¥‘

is, for the type of missiles to be considered later, small compared to

.5
it

(ko + ky)e "

particularly at the higher altitudes which sre of principal concern, If
the square term is omitted, the solution of equation (12) is known (see,
e.g., ref, 6)

- X - L
n = ClJo<2Jk2 ¥ Ky e 2) + C2Y0<2~/'k2_ ke = (13)

vwhere C, and Cp are constants of integration and, in sccordance with
Watson's notation (ref. T), the functions Jg and Y, are the zero order
Bessel functions of the first and second kind, respectively.

Combining equations (10a), (11), and (13) gives finally
By

-By - BY -2
= K1® clJo(2J Ko + g e = ) + C2Y0<2-J ko + K e - (14)

If it is specified that on entering the atmosphere (y —> «) the
missile is misaligned by the angle ag but has no angular veloecity, then

Cl=a'E
C2=O

(15a)
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and equation (1%) can be written

« Kk e'By _B :
o = 1 Jo<2~/k2 + Ky e 2 (15b)

In the cases of usual interest the quantity ks 1is very much larger than
ky, as will be shown later, so that one may use the approximation

(s A kle-ﬁy - 'B—
v T e JO<2~/—1-{2 e 2 (15¢)

For large values of the argument, the approximation
-By B
k - 2L
e 2® cos<% - 2Jks e 2@> (154)

&
B By

can be used, and the maximum or envelope value ls thus

&
°E By

aJEa e 2

In Appendix B are derived expressions for the angular veloclty end
angular scceleratlion as well as their maximum values during any cycle of
oscillation, The approximate meximum angular velocity per cycle is (see

eq. (B5c))

[d(m/aE)_:l* _ = - %3—’ . kl"@e-_? (15¢)

— — BVmein Ope

while the meximum angular acceleration per cycle is
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3
(a/ag)T it BT (ky-ko)e Y
] e | (158)

From equation (15d) it can be found that one cycle of oscillation
takes place during the altitude change

_ 2n
-By
BNkz e %
The frequency of oscillation 1ls thus
- By
BJEz e 2 V sin g
w =
2x

and using the velocity from equation (8a) one has

pVanko 8in 6, . Xo -BY _ By
= - 22n: Ee z € e 2 (15)

[\

The fregquency is maximum at the altitude
1
Yi=73 1n ko (178)

which, as shown in reference 1, is the altitude at which the deceleration
due to drag 1s maximum and the velocity is

- &
Vi=e & Vg ® 0.6l Vg (170)

The meximum frequency is

-k
[k /BV 251
@ =Wy = kﬁ <B E° 2:: - 6E> (17c)
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and the corresponding amplitude is from equation (15e)

(174)

oF f—kz

For later use it is of importance to note that in the analysis of
reference 1 it is shown that for turbulent flow the altitude for which
the average heat-transfer rate .1s s meximum i1s

1 m(-g- ko> (188)

Y2

when

Vo = e Vg = 0.72 Vg (18b)

(612

The corresponding frequency is

_.% :
- [__2% -<BVEe 2:in _6E> (18¢)

and the corresponding emplitude is

* EE;
<—9°— e (184)

On the other hand, for laminar flow (which, it is expected, should
be applicable at least for the stagnation point on the missile nose), the
altitude for meximum hesting rste is then

tahJ

N 1n(3ko)



NACA TN Lou8 _ 11

when
-z
Vz =e © Vg 20.85 Vg (19b)
and
-3
_ [k (BVge Csin 9E>
Wy = /3ko ( oo (19¢)
and
ky
* kg
-é%) = —— (194)
° Ko
3ko

From a loads point of view it is of value to note that from equa-
tion (15g) the altitude for which the maximum anguler scceleration
occurs 1is

zr{% (ko - kl):] (208)

1
Y4=E

and that the maximum scceleration is

3
¥* * =V

dz(u’/aE) d'z(a'/a’E) L 3k2 1* "% 2.y 2 2

—_— =l = e B=Vg~sin“6p (20b)
a2 4. at®  J, o L(ko- ki)
Also the normal force experienced is
N = = Cy.avZoh (21=)
2 Ny

and substitution from equations (1), (8a), and (15e) gives, for the meximum
noxrmal forece per cycle

2 -
_ MafmeoVE A -5 BV iy - ko)e Y

2 ‘If\/ k2

¥ (21b)
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This force is a meximum at y, and has the value

CN,omPoVE A [ 3 ¢ .8
Nppyx = Na = =2 :] 4} 21
mex = Mo = = e Uk - 500 (B1e)

Finally, it is of interest to determine the order of megnitude of
the drift due to dE from the course the missile would have had if aligned
with the flight pat If n 1is defined as the distance normael to the
straight line trajectory (that the mlssile would have if .ap were zero),
the latersal acceleration is

. 2
Pn |y ogine & (@) L, CL2VRh (22)
at2 JE gy \dt/ m 2m

Use of the relations of equations (1), (8a), and (15c) gives the lateral
veloclty at altitude ¥

at 2m sin GE

C Vo <% )E BY
% I(LG’E B OA 1*73 Byl J < J""" dy:l. (23&)
With the substitution
By
¢, =2k S

then this may be written

By
2ks e 2 K, - ..l;ﬁ .
dn _ _CraomVEooh <k Ca
dt ll'kgﬂm 8in QE 2 glJO(g l) dg 1 (23b)

The lateral displacement at y = O is, by similar substitution,
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ko kl_;‘;_g ]

' 2
¢
¢ k.
LA [ 8 2> [ yir Yoedo(t,)at At (23c)

" 2kpp%m sin®eg

Defining

k Z} < o)
1 ’
F(ko:kl,kz) =""“k2 § Jo(§ )dC dg (2,4'3')

then

Cryompoh
= —— (kg ,k 1,k olb
2p%m sin?GE (kok2,k2) (2ke)

The integration of equation (24a) may be performed in the special case for
which k; = kg = 0, for then

E
ro0k) =k [ F [ taattar,
=V
_a 1-Jo(2\ks) , 1
-+ [ awme-EEaa

For values of kg, and k; other than zero, en analytic solution of equa-
tion (24a) is not known. However, Dr. Williem Mersmsn has determined
values of the function by numerical integration using an IBM 650 type
digital computer. The computational procedure and results are given in
Appendix C. Over the range of variables of interest in this paper,
05k £10, -80 5 k1 £ 0, 5x10* < ky < 8x105, the integration indicates
that

F(ko,ki,k2) = 1/kp
within 0.2 percent (see-Appendix C, eq. (C20)).
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If the angle ap 1is consildered as a yaw angle then the miss dlstance
is the lateral or "deflection target error"

= — k k. 258,
< )z 282m Sin29 (kO 1 2) ( 5 )
while if the angle is considered as & pltch error, then the miss

distance is the longitudinal or “range target error”

_ CZ G,EpoA .
(eaE>x 2p2m sinseE F(ko,ki,kz) (25b)

Thus, in the general case, the area of miss is elliptical with the
major axis in the range direction (except when the missile descent is
vertical when the miss area is circular).

It is useful, for comparison purposes, to find the miss distance which,
results from an accidental trim angle, Qe The differentisl equation (22)
becomes in this case

2, c VZ0A
ztz = -V sin 6p E( ) “LalT & (26a)
2m
80 that
k -
an _ _ CatmeoVgh [V -2 PR e BVigy
= 1
at 2m sin 6
or

at koBm sin 6p

and, in turn,

C X0 _-B
-T-OJQ'TDOA (l_ez e y>dy

- kofm sin?GE
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which can be shown to give

c
_ Croaedt
= e Talko) (26¢)
wherein
Fo(ko) = -]i'—o [ﬁ(—?} -m(%) —0.577216] (264)

and ET(ko/E) is the exponential integral for which tabulated values are
given in reference 8, Values of F,(ko) have been computed for practical
values of kg and are presented in table I.

If the trim angle is a yaw angle then the miss distance is the
deflection target error

Cr,_appoh
(cag), = Toerarey Falko) (272)

while if the trim angle is a pitch angle then the miss distance is the
range target error

L
(ecw)x = 5%m sixdey F1(ko) _ (27®)

DISCUSSION

Conical Warheads

It is the purpose in the discussion to follow to examine the angular
motion of typical ballistic missiles in the atmosphere to ascertain the
importance of this motion to the problems of aerodynamic loading and
heating and miss distance. Conicsl shepes have been chosen for this study
because the calculated stabllity derivatives are available.

Tobak snd Wehrend (ref. 9) have calculated the stability derivatives
for cones of half-angle, &§. Although they give results which are applicable
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from low supersonic speeds (exceeding the Mach number for shock detachment)
to hypersonic speeds, the conecern of this paper will be only with the
hypersonic or Newtonian solutions. For arbitrary distance from the come
epex to the center of gravity, leg, reference 9 gives the pertinent
derivatlives, using the symbols of this report, as

2 cos®d

é?
Q
]

Cxg =Cp =2 gin25

CN@ - Cp = 2(cos®8 - 8in2s)

&

> (28a)

2
«(1 + tan®8) + % (1%5> -2 coszac%&)

&

Cmd'zo .
_ .k lgs>
Cr, = 3+2c01328<Z - )

\

In addition it should be noted that for cones the center of volume is &t
31/4 and the square of the ratio of cone length to radius of gyration for
arbitrary center-of-gravity position is (considering the body to be

uniformly solid)
2
<%> - 8o (28b)

2
12 tan2% + 3 + 80@-%5 - %)

Velidity of the Analysils

Before examining the stability, loading, heating, and miss-distance
problems it is necessary to determine whether the previous analysis is
valid for the conical shapes to be considered, It was noted that the
solution given by equation (15b) applies only in those cases for which in
the differential equation (12) the term .



NACA TN Lok8 ' 17

-2Y
(ks - k1%)e ™ (292)
can be neglected in comparison with
(k2 - ky)e™F (29m)

In Appendix D it is shown that the values of the factor (29a) are,
for practical cases, always very small compared to the values of the
factor (29b) and, in addition, that kp is, for practical cases, always
much larger than k; so that the solution of equation (15c) is valid.

Stability

-

In the equation (15¢) it is clear that the missile is statically
stable if ko is positive and certainly dynamically stable if k; is zero
or less than zero, If k; 1s positive, then it is possible for the oscil-
lation amplitude to increase with decreasing alititude. This may be con-
veniently shown from the approximate equation (15e) for the envelope value
of a. Writing this equation in the form

<%>* T e<kle-5y+¥ (30)

we find that the derivative of this function with respect to y 1is zero
when

-8y _ 1
I

kle

or

y=%zmwﬂ (31)

Thus 1f positive k; is even as large as 0.25, the analysis indicates
that the incipience of divergence occurs (at sea level). TFor larger posi-
tive values serious dlvergence at the lower glbtitudes would be antlicipated.
In order to obtealn & better grasp of the nature of such motions it is
instructive to examine the indicated behavior of a missile with some arbi-
trarily assumed (but practicably realizeble) static stability for several
velues of k;. For this purpose let 1t be supposed that ks is 10% and
k1 has, in turn, the value -10, O, and +10. The equation (15e)
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then yields the envelope curve of angular history shown in figure 1. It
is indicated that positive values of k4, could promote seriocus divergence .
of the amplitude of angular oscillation. Friedrich and Dore (ref, 2) dis- .
cussed the possibility of such divergence and noted that these adverse . :
effects could occur 1f the missile underwent large reductions in speed T
during the descent. However, no consideration was given in their report _
to the importance of the damping terms. In other words what they con- =
sidered, in the language of this report, was that the coefficlent k; (as
given by eq. (10c¢)) was overwhelmingly influenced by the drag coefficient.
These results of their analysis thus imply that high drag shapes are unsat-
isfactory for ballistic miseile application in spite of their inherent
advantages in the aerodynemic hesting problem (see, e.g., ref, 1).

The question of importance is, then, whether or not 1t is realistic
to ignore the demping terms (th) and. (Cmq + Cm&) due to plunging and

rotation, respectively, in the determination of sign and magnitude of ) _ T
ki, To answer this question it 1s convenilent to consider a simple conical R
shape of arbitrary cone hslf-angle, B,

To investigate the sign of k; for cones it is sufficient to _
evaluate the "dynamic stability" factor

2
Cp - CICL + (Cmq + Cm&)(‘é‘)

in equation (1Oc) by use of the relations of equations (282) and (28b).
This has been done and the results are presented in figure 2 for several :
center-of -gravity positions. (Note that zcg/z = 3/k 1s the center of .
volume and & most llkely position for the center of. gravity.) From fig-

ure 2 1t 1s seen that k; must always be negative for conical (and pre- -
sumebly for near conical) shapes. Thus the inference of reference 2 that
high-drag (i.e., large &) shapes are necessarily undeslrable from the
dynamic stability viewpoint is unjustified. Nevertheless, it should be
noted that while for the high-drag comes previously dlscussed the value

of k; was always négative, high-drag shapes which are blunted at the

nose can, in fact, have positive values of ki, This leads to some concern
since, for reasons of aerodynamic hegting, considerable blunting of the

nose mey be desirable, However, i1t should be noted that the divergences
Iindicated by the analysis given previously are greater than what will .
actually occur for the following reason: The analysis employs the velocity-
altitude relations from reference 1 and so doés not include the effect of
gravity on the veloclty-altitude history. ~This assumption is admissible

for the high-speed portions of the trajectory and for the portions wherein
the deceleration i1s large compared to that of gravity. For low drag shapes -
the assumptlion 1s generally admissible over theé whole altitude range but-
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for high drag shapes it becomes inadmissible at low altitudes., Thus the
actual trajectory is not a linear one but 1s steepened at the low alti-
tudes and the actual velocity approaches the so-called "terminal velocity"
(i.e., that speed for which the drag equals the weight) rather than zero
velocity. Then, in actuality the term (dV/dy)/V in equation 7(a)
approaches zero rather than the value indicated by equation 8(c). Hence,
while at high altitudes k; 1s determined by the "dynamic stability"
factor given sbove, at low altitudes for high drag shapes it would be
determined more nearly by '

-Cr, + (Cmq + %)(—92

and thus the actual value of k; at low altitudes would be more negative
than the analysis would indicate. Therefore, while divergence of the
motion might occur for & high drag shape, it would not necessarily
continue.

Next it 1s in order to examine the sign of the factor which controls
the static stability parameter

ky = PA [— L)src Bsins]
2~ 2p2m 8in26p Cna\g2 Lo E

It is shown in Appendix D that the second term in the bracketed expression
is small compared to the first for practical cases so that it is only
necessary to be assured that Cma is negative to insure stability. In

2
figure 3 the Newtonian value of QQJ£§> (from eqs. (28a) and (28b)) is
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plotted as a function of & for various values of 1,5/1, and it is seen

that when & 18 small, care must be exercised to keep the center of gravity
far forward. It should be noted (see ref. 9) that the center of pressure
is independent of Mach number down to the Mach number of shock detachment.
Thus the hypersonic requirement of leg is also the supersonic requirement,

From the preceding discussion, it 1s apparent that at least from low
supersonic to hypersonic speeds, positive statlc stability (i.e., positive
ko) can be obtained., Similarly, it can be shown that over the same speed
range dynemic stebility is assured (i.e., negative k;). Now it is impor-
tant to determine the magnitude of the static and dynamic stability which
can be provided. To this end the following digression in the discussion
is in order. :

For long-range ballistic missiles the aerodynamic heating problem
must be the principal consideration in design. It has been shown (e.g.,
see ref, 1) that, generslly, the aerodynamic heating problems are
reduced when the value of ko 18 increased. On the other hand, 1f ko
is too large then the speed of descent of the missile becomes low for too
great a part of the final trajectory which increases the vulnersbility of
the missile, Thus some compromise is required and this compromise wvalue
of kg tends to be larger the longer the range, A value that will be
considered herein to be a reasonable one for a 3,000- to 5,000-mile range
would be of the order of 5 to 20.

Now, k; (see egs, (8b) and (10c)) can be written in terms of ko in

the form
2
2[5 (52¢]
ki = [l & o - (32a)
while for kp, 1f the CLUB sin Oy part is neglected (see Appendix D), this
parameter becomes
2
o = ko Cmg, \ (1 b
2 = - o 5 (32b)
281 sin Op D/ _

Values of kj/ko and Bl sin Ogks/ko are given in tables IT and III. Since
ky/ko depends upon the location of the center of gravity and the cone
engle while kz/ko depends upon these factors and, in addition, the length
of the missile, it is necessary to consider some examples in order to
determine the msgnitudes likely to be realistic for k,; and k,. Accord-
ingly, let 1t be assumed that the missile weight is 3,000 pounds, that the
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entrance angle of the trajectory, 6, is 309, and that the values of the
stmospheric density relations are those of reference 1 (p, = 0.0034% slugs
per cubic foot, g™t = 22,000 feet). For values of ko equel, in turnm,

to 5, 10, and 20 the base diameters, lengths, and volumes of the example
missiles are those given in figures 4(a), 4(b), and k(c), respectively,

as functions of cone half-angle. For thlis analysis it is arbitrarily
assumed that the maximum allowable missile length is 30 feet and the mini-
mum allowsble volume is 10 cubic feet (corresponding to & high missile
density of 300 pounds per cubic foot). Thus in figures 4 the curves extend
only to the cone half-angles which correspond to these two limits (the
small cone-angle limit corresponds to the meximum allowed length and the
large cone-angle limit to the maximum allowed density). In addition, it
is arbitrarily specified that the center of gravity in each case is at &
distance from the apex (ch) where the local dismeter is 2-1/2 feet. The
resulting ratios of 1lgg/l1 are shown in figure L(a).

With these physical characteristics, the values of k; and kp are
those of figures 5 and 6. It is seen that the dynamic stebility is great-
est for large values of the drag parameter but for small values of the cone
angle, On the other hand, the static stability is generally greatest for
large values of both the drag perameter and cone angle. A notable excep-
tion to this trend of the static stability parameter is the shaxrp decrease
of ko at the largest angle for the ko = 5 case, Thls sudden reduction
results from the fact that the center-of-gravity position has rather
closely approached the center of pressure.

Consider, now, two extreme cases: first, the ko = 5 missile at maxi-
mum allowed density and second, the kg = 20 missile at maximum allowed
length. The former has least values for both stebility paremeters and
therefore will oscillate with the largest amplitudes, while the latter has
the largest dynemic stability parameter and has a rather high value for
the static stebility paremeter and thus should be representative of the
opposite extreme., The angular behavior with altitude for these two mis-
giles has been calculated using equations (15c) and (15e) and is shown in
figures (7a) and (7Tb). The high altitude oscillations of figure T(a) are
similar to those of (7b) but displaced downward, eltitudewise, by about
25,000 feet, This is an effect of the lower static stebllity parameter
for the kg = 5 missile. At the lower altitudes the kg = 20 missile
oscillations decrease more rapidly by virtue of the larger dynamic stability
paresmeter,

Heating

It was pointed out in the Introduction of this report that when the
time rates of aerodynamic heating are largest, it is important that the
oscillation smplitudes be small in order that additional coolant mass will
not be required to protect the vehicle from excessive local heating. It
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1s to be expected that, at least for not-too-small cone angles, maximum
osclllation amplitudes of the order of a few degrees of arc should be
permissible with no important adverse effects.

To determine whether or not the oscillations will be important as-
regards serodynamic heating it Is again convenient to consider a particular
example. The same 3,000-pound missiles are_used in this study. Since the
leminar heating rate slwsys reaches & maximum at a higher altitude than
does the maximum for turbulent heating, it igllows that (a/og)* et maximum
heating will be grester in the laminer case., : The amplitude ratio at the
altitude for meximum laminer heating rate (celculated using eq. (19d)) 1is
shown for the example missiles in figure 8, - It is seen that these values
are so low that no complications of the max;mum heating rate problem due
to initial angular misaligoment with the flight path, O s gshould be
expected. 1In figure 9 both the angular amplitude ratlio and the ratio of
laminar heating rate to meximum laminer hesting rate {see ref. 1) are
plotted as a function of altitude for one particular exsmple (ko =

250), which shows that while the amplitude ratio is very small at the
altitude for vhich maximum heating occurs, it may become sufficiently
important at the higher altitudes where the heating rate is still fairly
high to require consideration in design. .

Loads

To show the Jegree to which lateral loads due to ap are important
it is again useful to consider the example nissiles considered earlier.
To evaluate the maximum normal force using equation (2lc it is necessary
to specify the entrance speed, Vg, and 1t will be assumed, for the exam-
ples, that the speed is 20,000 feet per second. The maximum normal forces
in terms of missile welght per degree angle misallgnment at atmospheric
entrance for the examples are ‘shown in figure 10. While the normal.forces
are increased for the longer missiles (due to increased surface area), it
does not appear that they could be too serigus in a practical case., A
20° value for ap only promotes a 3g normal acceleratlon for the long
migssiles which is small compared to the deceleration due “to dreg which
(from the analysis of ref. 1) is 51lg. Moreaver, the maximum normal loads
are not additive to the meximum dreg loads since, as seen in figure 11,
they occur at different altitudes,

Miss Distance

Before considering the actusl megnitudes of the miss distances due
to am or ap 1t is well to dlscuss the accuracy of the analysis of miss
distance glven previously. In the analysis it is assumed that the velocity
at.all points of the trajectory is given by the exponential expression of



NACA TN LoL8 23

equation (8a) and this expression was, in turn, obtalned by neglecting the
effect of gravity. As noted earlier the neglect of the effect of gravity
is unimportant in the evaluation of the velocity-altitude history except
when the velocity is low and, simultaneously, the deceleration due to

drag becomes comparable to the acceleration of gravity. Then the veloclty
given by the analysis falls below that which would actually occur. In

the analysis of miss distance i1t should be clear that the miss distance
increases rapidly as the veloclty decreases, and, hence, the miss distances
glven by the analysis are in error by an emount which increases rapidly
with increasing Xk, when the decelerations near y = O become of the order
of the acceleration of gravity. To assure that the deceleration at sea
level is not less than lg, it is required (from ref. 1) that

e_ko < cg

ko = VE2B sin QE

For exsmple, for an entrance speed of 20,000 feet per second and for

6g = 30°, the sea level deceleration reaches lg for ko of about 7 (see
ref. 1); hence, the values of F(ko,k;,ks)(see Appendix C) and Fi(ko)
from table I should not be used, under these conditions, for values of

ko 1in excess of about 7, particularly as k, greatly exceeds this value.
Thus in the calculations to follow the miss distances for kg = 20 are not
included and, in addition, the reader must note that even for kg = 10 the
estimated miss distances exceed the actual ones.

The range target errors per degree angle misalignment at atmospheric
entrance for the example missiles (Vg = 20,000 ft/sec, 6 = 30°) are shown
in figure 12. The deflection target error, not shown, is simply one-half
the range value. It is seen that, as with the normal force, the miss
distance is greatest for the smallest cone angles. However, the miss dis-
tance is trivial since even for an ag of say 20° the range target error
is but about 20 feet in the worst case.

A serious problem is the miss distance which will result from a trim
engle even slightly different than zero. In figure 13 is shown the range
target error per degree of trim angle for the ko of 5 and 10. Tt is
seen that a trim angle of as little as 0.1° can cause a range error of
many miles., As the cone angle increases then for a given value of kg,
the miss distance diminishes until when the cone half-angle is 45° the
miss distance is zero since the lift-curve slope is then zero (see
eq. (27a)). Except in this special case, however, the miss distance due
to even a slight trim angle is very important. One method for reducing
this miss distance would be to spin the missile about its axis so that
it would follow a corkscrew path during descent. This solution introduces
another difficulty, however, in that care may have to be taken to keep the
spin rate from spproaching the pltching (or yawing) frequency else tumbling
may occur 1f the missile is not identical as regards aerodynemic and
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inertial characteristics about any radial axis (see ref. 5 or 10).

Unfortunately, the pltching frequency vasries from zero to the maximum

value gliven by equation (16). The maeximum frequenciles for the exsmple -
missiles are shown in figure 14. One obvious way to evoid tumbling
resulting from "roll coupling" would be to spin the missile at a rate

vwhich exceeds, by a good margin, the meximum shown in figure 1hk. If the
spin rates were the maximum pitch rates, the rim speeds at the base (i.e.,
at maximum diemeter) would be those shown in figure 15. Since the required
spin rate would have to materially exceed this rate, it 1s clear that a
serlous stress problem due to centrifugal loading might result (especially
for small cone angles). In consequence, & better solution might be to

spin the missile at a rate which is always less than the value of the

pitch frequency at any given altitude, but the difficulty, then, would

be one of assuring that the spin rate could sdot accldentally approach the . )
pitech frequency. In the preceding discussion it has been tacltly assumed T
that the missile is not identical as regards the aerodynamic and inertial B
characteristics about any radial exls so that the spin rate must not at
any time match the pltch rate. Since the pitch rate changes rapidly with
time (particularly at the higher altitudes), it is probably not a justi-
fiable requirement that the spin rate not ever be the pitch rate, particu- B
larly since the agsymmetries which exlst may be trivial. Some further _
consideration must clearly be glven this problem. - '

Effect of Initial Tumbling

In the discussion to this point it has been assumed that the missile _
enters the atmosphere misaligned by an arbltrary but fixed angle with
respect to the flight path. When the missile is actually tumbling before
entering the atmosphere, then the analysis gliven previously cennot be used
since the equation of motion is restricied to small-angle considerations.
(Thet the analysis is inadmissible is reflected in the fact that if, in

I

-

By
equation (13), Cz has a value which is not zero, then C2Y0<%~/k2+kl e éf)

becomes infinite if y is infinite.) In spite of this deficilency, some
general remarks can be made about the effect of initial tumbling. It is
clear at the outset thet the missile must have but one possible trim
attltude if initial tumbling occurs. If not, it could descend at some
attitude for which no adequate protection for aerocdynamic heating and
loading had been provided. Furthermore it is a requirement that it must
be righted to about the correct attitude at an altitude which is suffi-
clently high thiat the angular motions will become small by the time the
heating and loading are intense., One obvious way which might assure that
these conditions will be met would be to0 dispose of the empty fuel and «
oxidizer tankage only after the missile has entered the atmosphere
sufficlently far to adequately correct the attitude.
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CONCLUSTIONS

From an enalysis of the motion of & ballistic missile initially mis-
aligned with respect to the flight path prior to the entry into the
atmosphere, it is concluded that it is possible to:

l. Provide a continuocusly damped oscillation history with descent
through the atmosphere.

2. Keep the oscilletions to a small emplitude when at altitudes for
which serodynamic heating and loading are severe.

3. Prevent excessively large loads due to the oscillating motion.

Moreover, while the miss distance at the target due to the initial
migsalignment angle is trivisl, the error that can occur due to the trim
angle belng even slightly different than zero can be very lerge and its
effect must be minimized in some manner,

Since tumbling may occur prior to entry into the atmosphere the mis-
sile must have only one trim attitude and must be brought near this attitude
before the missile has progressed too far down through the atmosphere.

Ames Aeronsutical Isboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., June 15, 1956
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APPENDIX A
SYMBOLS

constant (See Appendix C, egs. (C2).)

reference area for coefficilent evaluation (base area
for cones) -

constant (See Appendix C, egs. (C2).)
constant (See Appendix C, egs. (C2).)
constants of integration

drag coefficient -

- rate of change of 1i1ft coefficlent with angle of

L
attack, %
a=>0

rate of change of moment coefficlent with angle of

attack, @&>
@4 >0

change of moment coefficient with time rate of change
oCm

..
Vs >0

rate of change of moment coefficlent with angular

of angle of attack,

oc

veloclty, K
d q_%)

q-=>0
-rate of change of normal-force coefficlent with angle

3Cy

of attack, ————

=0

axial-force coefficient .
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4 diameter of body base

e Naperian base

£1(t) ,£2(t) functions of time

fa(y) ,£4(¥) functions of altitude

Fi(ko) function used in evalusting of "miss distance" due
to agp (See table I.)

F(ko,kn,kz) function used in evaluation of "miss distance" due
to ap (See Appendix C.)

g acceleration due to gravity

h integer (See Appendix C.)

T mass moment of inertisa

Io,1,2,... integrals (See Appendix C.)

Jo( ) Bessel function of the first kind of zero order

J1,2,3,...,r,s( )  Bessel function of the first kind of order 1,2,3,...,r,s

ko the "drag" parameter (See eq. (8b).)

ki the "dynamic stability" parameter (See eq. (10ec).)

ko the "static stability” parameter (See eq. (10c).)

ka the "cross-products” parsmeter (See eq. (10c).)

1 body length and reference length for moment coefficient
evaluation

lcg distance from body bow to center of gravity

L cross-wind force

m missile mass

n distance normal to the trajectory the missile would

have if 1t were angularly aligned with flight path
and without angular - velocity

N normel force (force perpendicular to the axis of
revolution)
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Pl:2:3:°-°)r:3( )
a
r
8

80;1;2:'°':r:5( )

LY

Yol )

Q

e """7; /:; —~ @ w ;5 gg
T

=
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functions (See Appendix C.)
angular velocity

integer (See Appendix C.)
integer (See Appendix C.)
functions (See Appendix C.)

time

speed at arbltrary altitude
gpeed on entry to the atmosphere
along range distance

altitude

dimensionless altitude, By

Bessel function of second kind of zero order
across range distance

angle of attack

angle of. attack on entry to the atmosphere
angle of trim

density exponential (See eq. (1).)
half-angle of cone

deflection target error dve to ag

range target error due to ap

-deflection target error due to anp

range target error due to ap

.altitude variable (See eq. (23b).)

angle-of-attack function (See eq. (11).)
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()*

( Dpex
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angle between flight path and earth's surface that
missile has on entering the atmosphere

air density

air density at sea level

radius of gyration -

an arbitrary variable (See Appendix B.)

oscillation frequency

Superscripts

maximum value of the bracketed parameter which occurs
in any particuler cycle of oscillation

Subsecripts

meximum value of the bracketed parameter

Except for the parsmeters C, £, F, and k:

(),
(),
(g

(),

value of the bracketed parameter gt altitude for
meximum decelerstion

value of the bracketed parameter at altitude for
maximum turbulent heat-transfer rate

value of the bracketed parameter at altitude for
maximum leminax heat-transfer rate

value of the bracketed parameter at altitude for
meximum normal force
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APPENDIX B
DETERMINATION CF ANGUILIAR VELOCITY AND ANGUIAR ACCELERATION

It is the purpose in this appendix to derive the expressions for the
angular velocity and acceleration from equation (15b) which gives the
angular displacement as a function of sltitude. Noting that

dJo(¥) _ . ay
o J1(¥) Iy

then differentiation of equation (15b) yields

d _ -By __E_
%a—ﬁ‘:—) = -kiBe By kae Jo<2 Jkz + k1 e 2y> +

-B _ By B
g ek1® y[z Jkz + kg e 2 J1<2 Jkz + ki e Tyj} (B1)
and further noting that
4
£ W] = wolh) o

then

_ By
2

d2 _By - -

_ 8By -By -
282k, T ¥ Ky e 2 K1® Jl<2 Vo TR, e 2 ) (B2)

Using equations (5a), (8a), and (Bl)



i =
d(a/ag) N e i _BY Q
/ E = BVEB:LD GEEK‘ / [kle BVJO<2 \/ ks + kl e %l) .’ ka-l- kl e = Jl(E "’k2+kl e ] E
(83) g
and using equations (5b), (8a), (Bl), and (B2) .
&%(afog) - ko)e BV Cleqke ) - - - By
(@/@E) = BEV EainEQEe(kl k‘o)e klE - klkc’) 2By - k2e By T em a =2
th B D
. 3By
(21:; - %)Jkg +E e 2 J-.(E + kg e Tyn (BY4)

Sinces, for the cases of usual interest, the coefficient ks 18 80 very large compared to k;
then one may use:. the approximete expressions

alafog) by (- R)P B
-——(1—1:—1—'— = - Jks pVgsin 6ge = e 7 Jl(\EJk_z e T} (B5a)

which, for large values of the argument becomes

ko ) -By '
a /r"‘ - BY (k —-—)e _B
’Lc;/?u"ﬂ')"—"q"—ﬂkﬁ.BVEsin Bre %‘e o COB(-?E-EJ]SQE _23_') (B5Db)

80 that the maximum angular velocity during a cycle is

1€



[ngﬁfﬂl]*-= M/;@?; BVEsin_aEe"%g e(%l - %?;*;ﬂy

dt

Similarly, since ks is vér_y large compared to ./ kz or ky then approximately
QE( afan) Aem 1
Ny Iy #

= -kpP2V,Painloge Plelk1" kO)e—ByJ /2~/k _%Z\ '
d‘be = E QE e Ok o € )

which for large values of the argument becomes

S

¥ (afag)  ko* -y w)e ™ -5
—'—é.—te_- = = ﬁ BEVE‘?'SineeEe 4 1 © COB(E -2Jks e 11)

L]

and the meximm angular acceleration during a cycle 1is

I_dz(a./aE)_I* _ kp B2V _25in20 e ajﬁ_y e(kl‘ ko)e—ﬂy
L dt® B E

(B5Se)

(Bba)

(B6b)

(B6c)

2t

870 NI VOVN
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APPENDIX C
NUMERTICAT, INTEGRATION METHOD FOR THE INTEGRAL F(ko,k1,kz)

The following method for the numerical solution of the function
F(ko,k1,kp) was devised by Dr. William Mersmen of Ames Aeronautical
Laboratory. The integral to be evaluated is, from equation (2ka),

( - [F e (c1)
koF (ko ,ka,k = I 5 d ¢l
1,%2 A ¢ ol ,c)dt
where
3
a =2Jkz
b=k0/8k2 ? (c2)
c=@ko-kl>/ukzj
and

& .2
Io(se) =f ™%t £.90(6,)dE, (c3)

(¢]

By reference 7, pege 45,

§1r+lJr(§1) = E%" [§1r+lJr+1(§1.):l ’ r=0,1,2,. .. (ck)
1

Introducing

o
Ir(§;°) E’f e-c§12§1r+lJr(§1)d§l ’ r =0,1,2,. . . (c5)
[¢]

an integrstion by parts gives the recursion formula
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¢
I.(¢,c) = e-c§2§r+lJr+1(§) + 2ch/‘ e-CC1?§1r+2Jr+1(§1)
o)

That is,

-c§2

I.(,c) = e e T 1 (8) + 2eTp 1 (6,e) r = 0,1,2 (cé)

If this equation 18 multiplied by (2c)r_s and then summed on r

from 8§ to infinity, the following series representation is obtalned

-
Ta(L,e) = e b ¢Bt2 Z (266)PTg 134 (8) (c7)
h=0 . R

for any s = 0,1,2,. . ., the series being convergent provided that
|2et] < |.

In particular, then, setting s = O gives

Io(g,C) = e'cgzc Z (ECC)th.'.l(g)
h=o0

and substitution in equation (Cl) gives

kZF(kO)likZ) = Z SS(a)b:c) (CB)
8=0
where
8 : )
Sg(a,b,c) = (2c)sf e-(c-b)gzgst+l(g)d§ ’ S= 0,1,2,. . . (c9)

(o]

the series is convergent:'if [2ca] <:].
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Consider, first, the term s =0
a
-(e-b)t2
so(an,e) = [ e 0
o

By reference 7, page 18, J1(t) = -dJo(f)/df. Hence integration by parts
gives .

a,
So(a,b,e) = Jo(0) - e'(c‘b)azJo(a) - 2<c—b)f e'(c‘b)gzwo(g)dc
(o]

Referring to equation (C3), this is, sinece Jg(0) =1,

_ e-(c-b)a?

So(a,b,e) =1 Jola) - 2(e-b)Io(a,c-b) (c10)

To obtain a recursion formula for the general Sg, substitute in
equation (C9) the equation

Tgpq(t) =3C5 T4(8) = Jg-o(t)

from reference T, page 45, This gives immediately

s
sg(a,b,e) = kessg_,(a,b,c) - (2¢) Ig_,(a,c-b) , s=1,2,3,. . . (Cl1)

Thus , equations (C8), (Cl0), and (Cll) reduce the problem to one of com-
puting the sequence Is(a,c-b), s =0,1,2,, . . .

For computing purposes, it is desirable to introduce slowly varying
quantities. The following substitution turns out to be convenient

- 2
Pr(a,c-b) = e+(c o)e Ir(a,c-b)/ar'l'l r=0,1,2,. . . (c12)

The computing problem is then summarized by the following formulsae:
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Pg(a,c-b) = Z [2a(c-b)]hJs+h+l(a) (c13)
=O . .

for any s = 0,1,2,. . . .
Pr(a,c-b) = Jp,1(a) + 2a(c-d)Pp,,(a,c-b) , r=0,1,2,, .. (C1%)

So(a,b,e) = 1 - e (S5 (2} 4 Ba(c-b)Po(a,c-b)] (o15)

Sg(a,b,c) = kesSg_;(a,b,e) - (20a)se—(c-b)aZPg;l(a,c—b) , 8 =1,2,3,. . .
(c16)
kZF(kO:kl)kz) = z Ss(a,b)c) (CS)
8=0

The order in which the computations are to be performed ls dictated
by the following inequalities, each of which is obvious from the corre-
sponding integral definition, under the followlng general assumptlions

P20, 20, eb20

2ca <1, 2a(e-b) <1

The inequalities are

1
P.(a2,c-b)| § ———— g8 =0,1,2,. . . (ci7)
l 8 2 ‘ l _ 2&(C—b) J 225>
8, 8
|Ss(a,b,c)| < ] (2ac)” , 5“5_0,1,2 (c18)

From the latter, it can be determined how many terms of the series (c8)
are needed for any desired accuracy, so-that (C8) is replaced in’
practice by



NACA TN Lo48 ' 37

K
kzF(ko:kl;ka) = Z‘ Ss(a:b:c) (c19)

8=0

In the present work K = 20, giving a truncation error of less than 10~ 1°,
Once K is chosen, P 1s obtained from equation (C13) with s = K where
again enough terms are taken to insure the desired asccuracy. In the pres-
ent work the computer autamastically continued the series (Cl3) until the

surmand. [Ea(c-b)]hﬂk}h+1(a) became less than 10™°, Once Py has been

obtained from the series (C1l3), the recurrence relations (Clhk) are used
to compute Pg_,, Pgk-n,s - « P1, Po 1in that order. Then Sy is computed

from equation (C15), and Si, Sz,. . ., S¢ in that order from
equation (Cl16).

In the present paper the significant range of parameters is

0<k,< 10
80 < ky <O

5x10% < ko < 8x10°

For this range it can be shown that the series (Cl9) can be truncated at
K = 1 with an error less than 1X10"€, Furthermore, in the expression for
So and S, equations (Cl5) and (Cl6), the terms involving the exponential
function are also less than 1X107®, This gives the simple approximate
formulae . . .

and, hence

1
5 ko - ki

o~ (c20)

F(ko:kl;kz) -+ 1+
ko

with an error less than 2x1078/ks.
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APPENDIX D
ORDER OF MAGNITUDE OF FACTORS AFFECTING STABILITY

.In the analysis of this report, a number of simplifying assumptions
were made regarding the relstive importance of the several factors which

influence the stability. It is the purpose_ herein to demonstrate that
three of the agsumptlions which are of partlcular importance are, in fact
justified, These.assumptions are: : . .

(1) In the evaluation of values of kp (eq. (10c))
it is permissible to ignore the CLu contribution

in comparison with the C contribution. (This
assumption is deslred but not required.)

(2) In terms involving ks + ki, that 'k is
unimportant. (This assumption is_desired but not
requlred.)

(3) That kg - k;2 is trivial in comparison with
ks + ky {or, from assumption (2), in comparison with
ko). (This assumption is required ta obtain the
golution for the fundemental differential equation of
motion (eq. (12).)

Tt is to be noted at the outset that k,, ks, and kg can be written
in terms of the drag peremeter, k,, in the forms

R
- ee;l eyee [ <Cmm><> ( >’” sin GE] (v2)
-5 [ G ] e

The demonstration of the validity of the assumptions (1), (2), and (3)
will be con51dered_1n the sections I, II, and IIT as follow for conical

shapes.,

La
N
I

H

I. For this demonstration it is necessary to show that
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<—C—CI];!> Bl sin eE

is trivial in cémparison with

_ Omg (2N
CD g

Since the CLa term is larger the larger the value of 1 and sin )

it will be assumed that the 6y is about (slightly greater thsn) 45°
and the length is that for a 6-foot diemeter base (i.e., 1 = (3/ten 8) ft).

Then (since g7t = 22,000 £t) the comparison of the components is between,
approximately

cj—_mxm'4
CDtan 3

10

Assuming lcg/l is 0.30, 0.50, and 0,70 then the ratio of the exact value
of kg +to the approximste value of k, obtained by ignoring the CLkI

term is that shown in figure 16. It is seen that the approximetion is
excellent except when Cma goes to zero (shown for the ch = 0,70 case).

Of course, in no practical case would Cmm be allowed to approach zero.

and

IT. To show that k; is trivial in compsrison with ks it is
necessary to show that

il T, (Tt 1)2]
ko 4[1 o " Cp ><°

is small compared to

R 1510
X, 2Bl sin 6p Cp \9
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Agein the quantity ky will be least compared to k; when 1 sin O

ig largest; hence, the length and angle assumption. of section I is used
go that the comparison will be between -

2-1[- % 0]
ko & Cp . ©p g
kp _ _ tend (.?Ea.)@z
ko ox10-4 \ Cp/\?

Assuming leg /Z = 0,30, 0.50, and 0.70 then the ratio of the value
ks + ky to the value ko 1is that shown in figure 17. It is seen again
that, except when Cma goes to zero, the approximation is excellent.

and

III. In this demonstration it is necessary to show that

2
k, k -

ig trivial compared to -

(kg - ky2)e™2RY

mn

(kp + k;)eBY 2 kpe BV = }E‘f e-BY

The test of this assumption is more severe when ko is largest and ¥y
is minimum, and again, wvhen 1 sin 6p is largest. Using the largest

ko 1o be expected, say 20, and the length and angle from section I, and
for y = 0, the severe comparison is then between

a2

ks - ® = w005 - () |
v - tens (OmN
2 10-2 \ Cp/\O

and
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Assuming lcg/? = 0.30, 0.50, and 0.70, then the ratioc of (ks-k;®)/ks
It is seen again that, except when
Moreover since these coef-

ig that shown in figure 18.

goes to zero, the approximation is excellent,
ficlents enter the differential equation (12) multiplied by e~2BY and
e‘ﬁy, resgpectively, and these exponentisl values have, at altitude, the

values :
g% e-2fy e BY

0 1.00 1.00

50,000 |1.06x10"2 |1.03x10"%
100,000 | 1.12x10"%* | 1,06x1072
150,000 | 1.19x1078 |1.09x1073
200,000 { 1.25x10” 2 |1.12x107%
250,000 | 1.31x107%° | 1.15x10™°

then the integrated influence of the term involving ks - kla mist be

trivial compared to the kp term.
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Note:

TABLE I.- ERROR FUNCTION, F, (ko) , EQUATION (264)

Fy (ko)

0.500
571
.659
773
921

1.116

1.376

1.728

2.208

2.873

3.800

WO CF

O\ o~ O\

l_l

The values should not be used when kg

koeRo g — 75

2
VE 8 sin GE

is such that
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TABLE II.- DYNAMIC STABILITY PARAMETER, k,/k,, FOR CONES

leg
. l 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
deg )

5 |-59.7% |-59.31 |-58.87 |-38.%2 |-58.57 |[-59.91L |-65.0k [-77.59 |-90.02 [-90.13 |-85.16
10 -1h.6l [-14.53  {-ah 6 j-ikhl joibkbe [-1he78 |-15.8%  |-18.19 |-20.46 |-20.51 |-19.59
15 -6.256 | -6.24k7 | -6.243 | -6.25% | -6.300 | -6.434 | -6.767 | -7.373 | ~7.859 | -7.80L3 | -7.547
20 -3.339 | -3.354% | -3.376 | -3.%08 | -3.457 | -3.532 | -3.638 | -3.728 | -3.696 | -3.567 | -3.u454
25 -1.997 | -2.024% | -2.058 | -2.102 | 2.153 | -2.206 | -2.228 | 2,151 | -1.956 | -1.769 | -1.67L
30 -1.276 {-1.311 | -1.353 | -1.%02 | -1.4%6 | -1.500 | -1.493 | -L.370 | -L.139 -.92h0| -.8060
35 -850| -.8010| -.9380| -.9930| -1.048 | -1.088 | -1.072 -.9510] -.7321| -.51B4} ..3723
ko -.5856| -.6300| -.6818{ -.7386] -.7950| -.8320| -~.8L70| -.7120] -.5238| ~.3202] -.1654
b5 -.nés| -.ueys| -.5188F -.5770| -.6318| -.6668| -.6548| -.5702] -.4167| -.2380| -.0833
50 -.3102| -.3603| -Ja57F -.W730| ~.5245] - 5563 -5482] -.4830) -.3631] -.21h2] -.0708
25 -.2476| -.2986| -.3530f -~.4Mo7O0| -.4534 - 4760 -.eem7] -.3323] -.2194] -.0956
60 -.2183| -.2680| -.3188) -.3672| -.ho6T| - h293 -JDees|  -.3923] -.3272| -.2385] -.1388
65 -.2149| -.2604| -.3050| -.3450| -.376L] -.393%} -.3919] -.3691| -~.3246| -.2622| -.1811
70 -.2317| -.2697| -.3046| -.3347| -~.3567| -.3688| -.3682| -.3539| -.3259 -.2857| -.2357
5 -.2617] -.20886| -.3122{ -.3313| -.34hk9| -.3520f -.3518| -.3439] -.3284%} -.3057| -.2765

TABLE ITI.- STATIC STABILITY PARAMETER, p; sin 8g(k./k,), FOR CONES

5 73.00 81.00 90.35 [100.7 110.1 110.9 76.65 |-44.85 }203.6 o438  |-211.9
10 18.e8 [20.3% {22.7h | 25.h6 }28.06 | 28,79 | 21L.73 | -k.548 |-b0O.56 |-52,90 {-48.03
15 8.1h5 9.090 | 10.21 11.50 | 12.82 | 13.48 ] 11r.27 1.992 |-11.72 [-18.24 |-17.9%
20 b, 506 A*j}wa 5.820 6.605 | T.445 | 7.530 7.325 3.466 | ~2.837 | ~-6.850 | -7.715
25 2.95L -3.322 3774 1 o315 ¢ boaak 1 5.hos 5.255 | 3.533 36801 -2.195 | -3.267
30 2.051 | 2.320 2,649 3.046 | 3.h92 3.88 3.33& 3.148 1.481 -.1520| -1.111
35 1.504 1.708 1.956 2.955 2.59L 2.899 3. 2.636 1.804 .Tko| -.0380
4o 1.143 1.30L 1.ho1 1.717 1.967 2.197 2.298 2.126 1.639 [ 1.012 699
4n 8800 1.011 1.156 1.32h4 1.505 1.666 L.746 1..666 1.k03 1.031 B666
50 6985 LTS .9000| 1.021 1.145 1.252 1.306 1.271 1.131 <9200 6900
55 585 G165 6930 -T155 8560 .g22¢ L9505 Rely'e 8650 ST5k5 6200
60 Je3zl bpoo| 52051 .57AS| L6195 6565| .6795} .6690f .6350]  .5T75|  .5050
65 S3NT L3434 .3728 o1k Jhosh Lo Asha 516 JA367 L1106 .3762
T0 2179 .2329 ol 0606 2715 279h 2831 .28k 2768 D666 2506
5 .1328 1388 Al 1487 152k 1550 1562 1560 1543 1512 L1168

1

ghOty NiL VOVN
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' Cone half-angle, 8, deg

Figure 2.— Dynamic stability factors for conical missiles.
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Figure 3.- Static stability factors for conical
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Figure 4.- Physical

characteristics of example missiles.
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Figure 4.- Gontinued.
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Figure 4.- Conﬂnued.
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Figure 5.-Dynamic stability parameter for example conical
missiles.
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Figure 7.-Altitude variation of oscillations.
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Figure 8.- Amplitude ratio at altitude for maximum laminar
heating rate.
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Figure 10.- Maximum ~normal - force experienced by example
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example of largest probable error

missile-cone half - angle.
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